Radiometric dating, or radioactive dating as it is sometimes called, is a method used to date rocks and other objects based on the known decay rate of radioactive isotopes.

Different methods of radiometric dating can be used to estimate the age of a variety of natural and even man-made materials.

In fact, this form of dating has been used to date the age of rocks brought back to Earth from the moon.

radioactive decay and fossil dating-65

Radioactive decay and fossil dating video

These differing rates of decay help make uranium-lead dating one of the most reliable methods of radiometric dating because they provide two different decay clocks.

This provides a built-in cross-check to more accurately determine the age of the sample.

For example, uranium-lead dating can be used to find the age of a uranium-containing mineral.

It works because we know the fixed radioactive decay rates of uranium-238, which decays to lead-206, and for uranium-235, which decays to lead-207.

And this would also include things like trees and plants, which give us paper and cloth.

So, radiocarbon dating is also useful for determining the age of relics, such the Dead Sea Scrolls and the Shroud of Turin.

Uranium is not the only isotope that can be used to date rocks; we do see additional methods of radiometric dating based on the decay of different isotopes.

For example, with potassium-argon dating, we can tell the age of materials that contain potassium because we know that potassium-40 decays into argon-40 with a half-life of 1.3 billion years.

With rubidium-strontium dating, we see that rubidium-87 decays into strontium-87 with a half-life of 50 billion years.

By anyone's standards, 50 billion years is a long time.

The existing carbon-14 within the organism starts to decay back into nitrogen, and this starts our clock for radiocarbon dating.